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ABSTRACT

"An improved moire interferometry was used to record simultaneously both the vturtical

and horizontal displacementi associated with stable crack growth in an unlaxially

loaded 5052-H32 aluminum, single edge notched specimens. For stable crack growth up

to 2 mm, the vertical displacement field showed the dominance of the HRR field. HRR

field was detected in the horizontal displacement only at the initial stage of loading.

The far and near field J-integrals were path independent during this incremental crack

extension. These results and previous results involving 2024-0 and 2024-T3 aluminum

specimens indicate that J-characterization of a crack, is not valid for such ductile

materials in this specimen configuration.

INTRODUCTION

One of the most popular fracture criterion in nonlinear fracture mechanics is RI" G

[1968] J-integral concept for which large developmental efforts, experimental and

theoretical, have been expended for the past fifteen years. For a nonlinear elastic solid,

the J-integral is path independent and thus the experimentally more accessible far-field

J-integral value can be used to characterize the crack tip field. Furthermore, SHIH,

DELORENZI and ANDREWS [1979] showed, through finite element analysis, that this path

independency holds for small crack extension of about 5 mm in real engineering

materials.
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Physically, the J-integral value for a nonlinear elastic solid is the energy release

rate which reduces to the familiar strain energy release rate for a linearly elastic solid.

For a power hardening elastic-plastic material, HUTCHINSON [19681 and RICE and

ROSENGREN [1968] showed that the extent of J-dominated crack tip region, which is

commonly referred to as the HRR field, is characterized by this single parameter.

MCMEEKING and PARKS [1979] and SHIH [19851 used finite element analysis to study the

extent of the HRR fields in bend and tension fracture specimens. Both studies concluded

that the HRR field is severely reduced in the tension specimens. The HRR field has been

studied experimentally using the projection moire technique by CHIANG and HAREESH

[19861. This study showed that except for the very vicinity of the crack tip, t:'a HRR

field was a reasonable representation of the crack tip field. More recently, DADKHAH

and KOBAYASHI [1989] showed through moire interferometry that the dominant

displacement componfait, which is perpendicular to the crack, may conform with the

corresponding HRR component but the displacement component parallel to the crack

remained elastic and thus violated the premise of the HRR field.

The objective of this paper is to present further experimental evidence on the above and

to discuss the significance of these and previously presented results.

EXPERIMENTAL PROCEDURE

The vertical and horizontal displacements in an uniaxially loaded 5052-H32 aluminum,

single-edged notched plate were determined by an improved moire interferometry.

Figure 1 shows the specimen configuration which was loaded in a special testing

machine (HAWONG, KOBAYASHI, DADKHAH, KANG, RAMULU, [1987]). Figure 2a shows four

results of uniaxial stress-strain tension tests in the vertical and horizontal directions

for the 0.8 mm thick 5052-H32 aluminum alloy plate which were used in this study. The

stress-strain relations for the vertical and horizontal directions for this plate were

found to be within 5% of the experimental data shown in Figure 2a. Figure 2b shows the

two parameters for the corresponding power hardening relation which was fitted to

average of the four tests in Figure 2a.
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The improved moire interferometry is based on the four beam arrangement [POST, 19871

with an additional beam splitter and a prism which records simultaneously the vertical

and horizontal displacements in a single frame (DADKHAH, WANG and KOBAYASHI,

[1988]). This method removes the approximation, which was necessary in previous

studies (KANG, KOBAYASHI and POST, [1987]; KANG and KOBAYASHI, [1988]), in the J-

estimation. It is conducive for high speed photographic recording of the transient moire

fringes associated with a rapidly propagating crack. For this study, the moire fringes

during stable crack growth were recorded by a motorized Nikon camera.

An AST Turboscan Digitizer and a Macintosh II computer were used to digitize the

photographically recorded moire fringes. A software was developed to compute the two-

dimensional strain components from the recorded displacement field. These strain

components were used to compute the .- integral value along given rectangular contours,

which encompass the crack tip, as shown in Figure 1 (DADKHAH, KOBAYASHI, WANG and

GRAESSER, [1988]).

J-INTEGRAL EVALUATION

The evaluation of the J-Integral requires the strain components, the stress components

and the strain energy density at each data along the contours (RICE, [1968]). KING and

HERRMANN [1981] used measured strains along the two traction-free edges of a centrally

cracked tensile specimen to determine the J-integral. Measured strains have also been

used by (MACKENZIE, MCKELVIE and WALKER, [1986]; MULLER and GROSS, [1980];

KAWAHARA and BRANDON, [1982]; READ, [1983]) to determine J experimentally. Each

procedure was somewhat limited in its applicability due to difficulties encountered in

measuring the rotation terms, au/ay and av/ax, simultaneously.

A major advantage which is gained by using the four-beam arrangement (POST, [1987]) is

that both au/ay and av/ax can be quantified directly from the in-plane u- and v-

displacement fields which are represented by the two moire fringe patterns. The J-

measurement, which is derived for rectangular contours surru~ndiig the crack tip, is
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first divided into line integrals along the vertical and horizontal segments as shown in

Figure 1. The integral value of J along the vertical segments is:

JV= W [- Oxx '+? xy dy - fW - xx a'+ xyV dy (1)

V1 V2

and along the horizontal segments, the value of J is:

JH W - (oxx '+ xy dx + f W - xx a+ u xy a dx (2)

H1  H2

Using the J 2 -deformation theory for multiaxial states, the strains in the vicinity of a

crack tip in a power hardening material is represented by

Eij/Eo = 3/2 a(oe/0o) n-1 Sij (3)

and

O = (3/2 SijSij)1 /2  (4)

where Sij is the deviatoric stress, and E = is uniaxial strain with E as modulus of

elasticity. 0o is the yield stress and a and n are two the disposal parameters to fit

the power law hardening stress-strain relation with the uniaxial tensile data.

For the state of generalized plane stress, the stress-strain relations for this power

hardening material can be expressed in the following matrix forms;

O ( (1 +F) (v+F/2) 0 E:X

oy (v+F/2) (1+F) 0 Ey (5)

xy 0 0 [2(1 -v)/2+F/4] ) xy
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where E and v are the modulus of elasticity and Poison's ratio, respectively, and

F = a -n1

y= (1+v+1.5F) (1-v+O.5F)

2 2 2 2
0e = x ;XY +& xy

Strain energy density W is defined as:

W = f o 1dE11

0

1 l+v 2 1+2v 2 an 2
W= 'E -309 + 6  kk + -- Oe (6)

where 0o is the yield stress.

The resultant J-integral value for this problem is given by

J = Jv + JH (7)

Accuracy of this procedure was assessed by evaluating equs. (1) and (2) along a 4.2 cm

contour, which did not enclose the crack tip, using the moire fringe data. The resultant

J= 49.0 (Pa-m), which theoretically should vanish, was 0.4 % of the minimum recorded J-

value in this study.
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Path independency of the J-integral during stable crack growth was evaluated using a

series of rectangular paths encompassing the extending crack tip: as shown in Figure 1.

HRR FIELD

For a power hardening material, the r-1 singularity in W implies a r1'/(n+l)

singularity in the stresses, a r-n/(n+l) singularity in the strains, and a rl/( n + l)

variation in the displacements. The near-crack tip singularity fields can be written as

(J1n+ 1
1il = C0I ooolnr) Jj(en) (9)

( j'J'/n1
Eij =  o E oolrJ i (,n) (10)

(o J vn+1
Ui- ui = ar o (1 1 )

(yo;onrT 1 On

The dimensionless e- variations of 4ij (e, n), Zij (e,n) and 0i (e, n) and the normalizing

constant In depend on the fracture mode, on n and on the state of plane strain or plane

stress. These variations must be normalized in some manner and thus the maximum

value of 69 = 3/2 (Sij.Silj) 1/2 was set to unity in this study. The contribution in Di

allows for a possible translation of the crack tip.

RESULTS

One 5052-H32 aluminum cruciform specimen was loaded uniaxially to generate a stable

crack growth length of Aa = 2 mm at which point the experiment was terminated since
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the moire fringes became too dense and indistinguisable. Figure 3 shows the load versus

load-line displacement relation for this uniaxially loaded 5052-H32 aluminum cruciform

specimen.

Figures 4a and 4b show typical moire fringes, i.e., the vertical displacement, v, and the

horizontal displacement, u. Also shown are typical integration contours used for the J-

integral evaluation. The J values obtained along these contours are shown in Table 1.

Path independence, i.e., within a eight percent scatter in the J-values, is noted. The J-

integral values which were computed (SHIH, GERMAN and KUMAR [1981]) by using the

results of Figure 1, are also shown for comparison in Table 1. The specimen of the

single edge notched specimen under uniaxial tension used in this computation was set to

b = 85.7 mm.

Figure 5 and 6 show typical log-log plots of the v- and u-displacement fields obtained

from the moire fringes at a crack extension of Aa = 1.95 mm. The load for these

recording can be found from Fig. 1. Also shown are the log-log plots of the

displacements versus radial distance, r, of the linear elastic fracture mechanics (LEFM)

and HRR fields at a crack tip polar angle of 0 = 450. The LEFM field was obtained by

computing the equivalent stress intensity factor from the average J-value obtained from

the contour integration. The HRR field was obtained by substituting this average J-value

into equ. (11). The HRR field requires that the slope of the log-log plots be a constant of

1/(n + 1), which is 0.059 for the 5052-H32 aluminum used in this study. These plots

indicate that the v-field conformed with the HRR field requirement at a radial distance

approximately 7 mm away from the crack tip. The nonlinear zone as gleaned from Fig.

5a, (HUTCHINSON, [19831) thus extends 7 mm from the crack tip along 0 = 450. The u-

field, on the other hand, conformed with the LEFM crack tip field beyond the 7mm radial

distance and had a much smaller strain singularity inside of this 7 mm boundary. This

nonlinear region in 5052-H32 aluminum alloy is much larger than 2024-0 and 2024-T3

aluminum alloys (DADKHAH and KOBAYASHI [1989]. A total of fourteen log-log plots of

the u- and v-fields obtained in this study were evaluated to arrive at the conclusion that

only the v-field exhibited the HRR field through the loading and stable crack growth

process.
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Figure 7 and 8 shows plots of the measured v- and u-displacements at a point of r = 1.2

and 5 mm, respectively (1.5 and 6.3 times the plate thickness) and at 0 = 450, where HRR

field was shown to extend the furthest (CHIANG and HAREESH, [19861), with increasing

applied load. Also shown are the corresponding u- and v-displacement fields for the

LEFM and HRR fields at the same location. These results show that the region of r = 1.2

mm is entrenched in the nonlinear zone while the v-displacement of r = 5 mm follows

the HRR field throughout the entire loading. The u-displacement field, on the other hand,

fell away from the HRR after the initial loadirg.

Figure 9 shows the traditional J-resistance curve of this 5052-H32 specimen. Also

shown are the approximate J-integral values which were reported by KANG and

KOBAYASHI [19871, for the same material but for a much smaller conventional single

edge notched specimen. These J-resistance curves differ with others in that crack

extension occurs at a very low applied load without the significant blunting as reported

by PARIS, TADA, ZAHOOR and ERNST [19791.

DISCUSSIONS

The results described in this paper are in complete a('reement with those for the less

ductile 2024-0 and 2024-T3 aluminum cruciform specimens by DADKHAH and KOBAYASHI

[19891. Figures 10 and 11 show typical variations of the measured v-and u-displacement

fields respectively, in identical 2024-0 and 2024-T3 aluminum specimen together with

the corresponding displacements for HRR and LEFM fields at a radial distance of r = 1.2

mm and polar angle of 0 = 450 from the crack tip. Unlike the 5052-H32 aluminum

specimen the v-displacement in the more strain hardening 2024-0 and 2024-T3

aluminum alloy followed the HRR field throughout the stable crack growth of Aa = 2 mm.

The u-displacement field, on the other hand, exhibited the same trend of falling away

from the HRR field after the quarter of the loading phase. These results are in

agreement with the replotted experimental results (HU and LIU 119761) of KE and LIU

(1973] who used geometric moire method to detemine the dominant strain component in

2024-0 aluminum double-edge-notched specimens.
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It should be noted that this present discussion is limited to the analysis of HRR region

of a moving crack in plane stress conditions. This and the above referenced previous

results of DADKHAH and KOBAYASHI [1989] both showed that only the v-field exhibited

the expected progression from the LEFM to the HRR crack tip fields with increasing load.

Unlike 2024-0 and 2024-T3, the v-displacement in the more ductile 5052-H32 (n = 16

deviated from the corresponding HRR component at a higher loading where the HRR

singularity field prevailed in the former two aluminum alloys. The u-displacement

fields in both the 2024-0 and 5052-H32 specimens deviated from the corresponding HRR

field at the very earlier stages of loading. Figure 2 shows that anisotropy in the rolled

aluminum alloy sheet could hardly contribute to this deviation for the 5052-H32

specimen. Similar disclaimers are gleaned from the uniaxial stress-strain data of

2024-0 and 2024-T3, rolled aluminum sheets.

The above results are in disagreement with the requirements for the J-dominant region

for plane strain condition by HUTCHINSON [19831 and SHIH [19851 where both the u- and

v-displacement conformed with those of the HRR field. These results thus indicate that

the desired HRR field does not exist in ductile materials and that J in this case is not a

parameter which characterizes the crack tip singularity. J should thus be considered a

contour integral, as defined by eqns. (1) and (2), and appears to be path independent for

the small crack extension of approximately 2 mm considered in this study. The J-

integral could thus be used as a far field parameter provided it is not used to

characterize crack tip field,

Finally, one notes that the deformation theory of plasticity was used to compute the

stresses for the contour integration in eqn. (3) t.,rough (6). Which are opened to

experimental scrutiny. The path independency check and the vanishing J along a contour,

which did not contain the crack tip, indirectly validate the use of deformation theory of

plasticity in this study.

The large deviations, as shown in Table 1, between the J-values estimated by using

SHIH, GERMAN and KUMAR [19811 formula requires further investigation. Since the

cruciform specimen used in this study is substantially different in geometry with the
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conventional single-edge notched specimen used by SHIH, GERMAN and KUMAR 119851, any

conclusion regarding his formula is strictly speculative at this time.

CONCLUSIONS

1) HRR field existed in the v-field during the stable crack growth process in a region

beyond the nonlinear zone at the crack tip.

2) LEFM field existed in the for u-field beyond the nonlinear zone.

3) J is path independent for a small crack extension of 2 mm in 5052-H32 aluminum

alloy.
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Table 1. J-Integral Values Under Stable Crack Growth

in 5052-H32 Aluminum Specimen, MD031188(1)

J (kPa-m)
Load in Y ___ __ _____ Aa
direction (N) Contour I Contour 2SHIH ET AL (mm)

[19811
b = 85.7 mm

2370 4.8 5.2 3.9 -0.

3810 8.0 7.3 10.0 0.2
4400 12.9 116 14.8 0.36
52.50 18.6 17.1 22.2 0.5
5760 23.8 253 29.6 0.75
6780 42.8 40.4 430. 1 .35
7460 66.7 64.7 430. 1 .95

ASK/cm :bfp
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Figure 4a. v-Displacement in 5052-1-32 Aluminum
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Figure 4b. u-Displacement in 5052-H32 Aluminum
Specimen, MD031188(1), Aa 0.75 (mm), Fy

=5760 (N).
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H32 Aluminum Specimen, MD031188(1)-8.
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